Cycle Consulting, Inc.
Delphi Coding Standards

| ntroduction

The goal of this document is to establish a standard coding style for use on all projects at Cycle Consulting,
Inc. Theintent isto makeit so that every programmer on ateam and within Cycle Consulting, Inc., can
understand the code being written by other programmers. Thisis accomplished by making the code more
readable through consistency and uniformity.

This document does not cover user interface standards. Thisis a separate but equally important topic.
Enough third-party books and Microsoft documentation cover such guidelines that we decided not to
replicate this information but rather to refer you to the Microsoft Devel opers Network and other sources
where that information may be available.

General Source Code Formatting Rules

I ndentation

Indenting will be three (3) spaces per level. Y ou should not save tab characters to source your files. The
reason for this is because tab characters are expanded to different widths with different user settings and by
different source management utilities (print, archive, version control, etc.).

Y ou can disable saving tab characters by turning off the "Use tab character" and "Optimal fill" check boxes
on the Editor page of the Environment Options dialog (accessed via Tools | Environment).

Margins

Margins will be set to eighty (80) characters. In general, source shall not exceed this margin with the
exception to finish aword, but this guideline is somewhat flexible. Wherever possible, statements that
extend beyond one line should be wrapped after acommaor an operator. When a statement is wrapped, it
should be indented so that logically grouped segments are on the same level of indentation.

Formatting

Formatting of the source code in aproject is critical to the readability and maintainability of the source
code. The key formatting points for readabl e source code are the liberal use of white space (blank spaces
and blank lines) and aignment of like itemsin lines of source code. Therefore, al source codein aproject
must be formatted using ablock style. For example, when multiple local variables are declared, the names
should be aligned along with the colon (:) characters, the data type names, and the documentation. Below
isan example:
var
oStore : TDataStore; /1l Referece to the data storage
alLayout : TLayoutArray; // Structure array for the data storage
Assignments to variables should be handled similarly where the assignment operators (:=) are aligned.
Below is an example:
aLayout[00, 00]
aLayout[00, 01]
aLayout[01, 00]

"String Data';
N
‘"I nteger Data';

Page 1 of 27

aLayout[01, 01] :="1";

aLayout[02, 00] := "'Float Data';
aLayout[02, 01] :="'F';

alLayout[03, 00] := 'Currency Data';
alLayout[03, 01] :="'$';

aLayout[04, 00] := 'Data Data';
aLayout|[04, 01] :="'D;

aLayout[05, 00] := 'Bool ean Data';
aLayout[05, 01] :="'B';

aLayout[06, 00] := 'Subltem String 1';
aLayout[06, 01] :="'S';

aLayout[07, 00] := 'Subltem String 1';
aLayout[07, 01] :="'S';

aLayout[08, 00] := '"Subltem String 1';
aLayout[08, 01] :="'S;

aLayout[09, 00] := 'Subltem String 1';
aLayout[09, 01] :="'S";

Along with the alignment of lines of codein ablock style, the source code should make liberal use of blank
lines. This alowsthe source code to contain documentation without the comments running into subsequent
lines as well as making the source code easier to read. Below is an example:

/[l 1f the current |layout item does NOT contain the word MEMO ..

if (Pos('"MEMO, sTest) = 00) then begin

/1 Add a new sub-itemand return its position in the |ist.
nNode : = sel f. AddNode(aStruct[i, 00]);

/'l Recursively call this nethod to add
/[l the itens to the new node.
self.Set Structure(aStruct, nltem+ 01)

end
el se begin

/! Add a new nenp itemto the |ist.
nNode : = sel f. AddMemo(aStruct[i, 00], "', "');

/[l Clear any items fromthe contained stringlist.
TMenmoStoreltem self.ltenms[nNode]). Val ue. d ear;

end;

In addition to the use of blank lines, all operators (i.e. +,-, *, /, div, =, :=, :, etc.) excluding commas and
semi -colons should aways be preceded and succeeded by a blank space.

Comments

Delphi provides three types of comment charactersthat may be used to write source code documentation.
Thefirst isthe double forward slash “//” which can be used for single line comments. The second isthe
open curly brace, close curly brace pair “{}”, which can be used for multiple line comments. Third, the
developer can use the parenthesis asterisk, asterisk parenthesis pair “(**)” for multiple line comments as
well.

At Cycle Consulting, Inc., we will use the double forward slash “//” for single line comments and the open
curly brace, close curly brace pair “{}” for multiple line comments. The parenthesis asterisk, asterisk

Page 2 of 27

parenthesis pair “(**)” will be reserved for temporarily removing code or commenting out a block of code
during devel opment.

Documentation

Each paragraph or logica block in the source code must be preceded by a multi-line comment describing
the structure and function of the block of source code. Typically, these paragraphs begin with alogical
congtruct (if..then..else, while, for, repeat..until, try..except, try..finaly, etc.), and conclude with the
keyword, “end”. These paragraphs can also contain sub-paragraphs, which maintain this same requirement.
Below is an example of logical block documentation:

// If the new key code is in the list of fields....

[/l Since the user has a canpaign conflict, we nust

// bring up the edit for the new key code on the

/1 posibility that the new key code is a duiplicate.

if (nNewkey <> -1) then begin

/[l Put the possible duplicate value in the
/1 edit so that the user can change it.
oFor m edKey. Text := Upper Case(TLoadFi el d(oRecord[nNewKey]).Data);

/1 Enabl e the new key code edit.
oFor m edKey. Enabl ed : = true;

end;

Structure

Since the entire software industry is moving to a more component oriented architecture to promote code
reuse, the projects at Cycle Consulting, Inc., should always be designed with this trend in mind. For
instance, the formsin a project should have very short event handlers that are often only one line of code.
The event handler should delegate all of the “business” functionality of the applicati on to non-event
handling methods of the class or to an instance of a more business related class. Below is an example of an
even handler delegating its “business’ functionality to a non-event handling method:

procedure Tfrmvai n. m Sel ect Sour ceCl i ck(Sender: TObject);
begi n

/'l Select the source publication that will provide the data that the
/[l user will analyze to create a new nmiling canpaign. The source
/1 tables contain all of the data pertaining to the publication

/1 including previous and current mailing canpai gn data.

sel f. Sel ect Sour ce;

end;

{
VO D Sel ect Source()
Met hod to enable the application to specify the source data that the
user will performanalysis on to determne the viability of a new direct
mai | marketing canpai gn.
Modi fications: 02/08/99 - Created.

}

procedure Tfrmvai n. Sel ect Sour ce;

Page 3 of 27

begi n

end;
Notice how the click event handler for the menu simply delegates al of the "business' functiondity to
another method of the form. This enables greater flexibility in maintenance and enhancement of the
business logic of the form without atering code that is explicitly tied to the user interface. It aso offersthe
possibility of moving the business logic to a separate class or component in order to implement an n-tier
distributed architecture using the Component Object Moddl (COM) or the Common Object Request Broker
Architecture (CORBA).

Conditional Defines

Conditional defines shall be created with curly braces - "{", "}" - and with the conditional command in
uppercase. Each conditional defineis named again in the closing block to enhance readability of the code.
They shall beindented in the same manner as blocks - for example:
if ... then begin
{$! FDEF VER90}
rai se Exception. CreateRes(sError);
{ $ELSE}
rai se Exception.Create(sError);

{$ENDI F VER90}

end;

Begin..End Pair

The “begin” keyword must appear on the same line as the statement. For example, the following first line
is correct; the second line isincorrect:

for i :=0to 10 do begin // Correct, begin on sane |line as for

end;

for i :=0to 10 do /1 Incorrect, begin appears on a separate |ine
begi n

end;

The“end” keyword always appears on its own line and at the end of the construct that was started with the
“begin” keyword. The indentation of the “end” keyword should match the indentation of the statement that
started the construct. Below is an example of an “if” statement using the correct style:
if sone statement = ... then begin // Correct, begin on sane line as if
SoneSt at enent ;
end

el se begin [/ Correct, begin on sanme |line as el se

SoneQ her St at enent ;

Page 4 of 27

end;

Below is anincorrect use of the “begin” and “end” statements:
if sonme statement = ... then // Incorrect, begin appears on a separate |line
begi n

SoneSt at enment ;
end
el se /1 Incorrect, begin appears on a separate |line
begi n

SoneQt her St at enent ;

end;

Object Pascal

Parenthesis

There should aways be white space between an open parenthesis and the next character. Likewise, there
should always be white space between a close parenthesis and the previous character. The following
exampleillustrates correct and incorrect spacing with regard to parentheses:

Cal | Proc(aParanmeter); // Correct

Cal | Proc(aPar anet er) ; /'l 1 ncorrect
Liberal use of parenthesesin astatement isrequired. Parentheses should be used to reduce the ambiguity
of the source code as well asto assist the compiler, where required, to achieve the intended meaning in
source code. The following examplesillustrate correct and incorrect usage:

if (i =42) then /1 Correct
if i =42 then Il 1ncorrect
if ((i =42) or (j =42)) then [// Correct
if (i =42) or (j =42) then /'l lncorrect

Reserved Wordsand Key Words

Object Pascal language reserved words and key words shall always be completely lowercase. By defaullt,
the syntax highlighting feature of the IDE will already print these wordsin bold face. You shall not use
uppercase or mixed case for any of these words.

Types

Capitalization Convention

Type names that are reserved words shall be completely lowercase. All other native type names (integer,
char, Boolean, single, double, etc.) shall be completely lower case aswell. Win32 APl types are generally
completely uppercase, and you should follow the convention for a particular type name shown in the
Windows.pas or other API unit. For other type namesincluding user defined types, the first letter shall be
uppercase and the rest shall be camel -capped (mixed case) for clarity. Here are some examples:

var

sMyString : string; /! Reserved word
hW ndowHandl e : HWND; /1 Wn32 APl type
i . integer; [/l Type identifier introduced in System unit

Page 5 of 27

oLi st . TLi st; /1 VCL defined type
oDat aSt ore . TDataStore; // User defined type

Integer Types

Use of the fundamental integer types (Shortint, Smallint, Longlint, Int64, Byte, Word, and LongWord) is
discouraged since they result in slower performance for the underlying CPU and operating system than the
generic integer types (Integer and Cardina). Therefore, aproject should only use the fundamental types
when the physical byte size of the integer variable is signifi cant (such as when using other-language DLLS).

Floating Point Types

Use of the Real typeis discouraged becauseit exists only for backward compatibility with older Pascal
code. Use Doublefor general purpose floating point needs. Doubleis the type for which the processor
instructions and busses are optimized and is an |IEEE defined standard data format. Use Extended only
when more rangeis required than that offered by Double. Extended is an Intel specified type and not
supported on Java. Use Single only when the physical byte size of the floating-point variableis significant
(such as when using other-language DLLS).

Enumerated Types

Names for enumerated types must be meaningful to the purpose of the enumeration. The type name must
be prefixed with the capital “T” character to annotate it as atype declaration. The identifier list of the
enumerated type must contain alowercase two to three character prefix that relates it to the original
enumerated type name - for example:

TSongType = (st Rock, st C assical, stCountry);

Variant and OleVariant

The use of the Variant and OleVariant typesis discouraged in general, but these types are necessary for
programming when data types are known only at runtime, such asis often the casein COM and database
development. Use OleVariant for COM-based programming such as Automation and ActiveX controls,
and use Variant for non-COM programming. The reason isthat a Variant can store native Delphi strings
efficiently (same as a string variable), but OleVariant converts all strings to OLE Strings (WideChar
strings) and are not reference counted - they are always copied.

Structured Types

Array Types

Names for array types must be meaningful to the purpose for the array. The type name must be prefixed
with a capital “T” character. If apointer to the array typeis declared, it must be prefixed with the character

“P" and declared immediately prior to the type declaration - for example:

type

PCycl eArray = ~TCycl eArray;

TCycl eArray = array[1..100] of integer;
Record Types

A record type shall be given aname meaningful to its purpose. The type declaration must be prefixed with
the character capital “T". If apointer to the record typeis declared, it must be prefixed with the character
“P" and declared immediately prior to the type declaration. The type declaration for each element must be
aligned in a column to the right, indented one level - for example:

type

Page 6 of 27

PEnpl oyee ATEnpl oyee;

TEnpl oyee record
sName : string;
nRate : doubl e;

end;

Variables

Variable Naming and Formatting

All variables should be given descriptive names meaningful to their purpose that are prefixed with a
character or set of characters that denotes its datatype. The prefix for the variable name should always be
in lower case. The names should bein mixed case with thefirst letter after the prefix in uppercase foll owed
by lower case letters. If the name of the variableis made up of more than one distinct word, then the first
letter of each word should be capitalized followed by lower case letters. The underscore character should
not be used in variable names. Below are the accepted variabl e prefixes.

Data Type Prefix Character Example
Integer n nCounter
Char c cLetter
Boolean b bContinue
Enumerated e eCards
Subrange sub subRange
Floating Point n nPercent
String S sLastName
Array a aData

Record r rHeader

Set set setStatus
Class (Instance of TClass) cl clDataStore
Object (Instance of TObject) 0 oDataStore
Pointer ptr ptrAccelerators
Variant v vExcel
Procedura proc procSetScope
File f fOutput

Note the fact that some data types share the same descriptive prefix character. For instance, all nhumeric
Loop control variables, however, are generdly given asingle
character name such asi, j, or k. It isacceptable to use amore meaningful name as well such as
nUserIndex. Boolean variable names must be descriptive enough so that their meanings of “True” and

types are prefixed with the letter “n”.

“False” valueswill be clear.

Declaring Variables

When declaring variables, there shall be no multiple declarations for one type on asingleline. Each

variableis always assigned a specific type on its own line - for example:

var

nLength : integer;
nCount : integer;

var
nLengt h, nCount

/1l Correct

i nteger; // Incorrect

It is acceptabl e to prefix each variable declaration with the var keyword - for example;

var nLength : integer;
var nCount : integer;

Page 7 of 27

Documentation

A description of the purpose and/or use of the variable should follow each variable declaration. The
description should use the double dlash “//” comment marker. Below is an example:
var

nLevel : integer; // Security level for the current user
sName : string; // Nane of the current user
Local Variables

Local variables used within procedures follow the same usage and naming conventions for all other
variables. Temporary variables will be named appropriately. When necessary, initialization of loca
variables will occur immediately upon entry into the routine. Local AnsiString variables are automatically
initialized to an empty string, local interface and dispinterface type variables are automatically initiaized to
nil, and loca Variant and OleVariant type variables are automatically initialized to Unassigned.

Use of Global Variables

Use of global variables is discouraged, however, they may be used when necessary. When thisis the case,
you are encouraged to keep global variables within the context where they are used. For example, a global
variable may be global only within the scope of a single unit'simplementation section. Global datathat is
intended to be used by a number of units shall be moved into a common unit used by all unitsin the project.
Globa datamay beinitialized with avalue directly in the var section. Bear in mind that all global datais
automatically zero-initialized, so do not initialize global variablesto "empty" values such as 0, nil, ",
Unassigned, and so on. One reason for this is because zero-initialized globa data occupies no spacein the
exefile. Zero-initidized datais stored in a'virtua' data segment that is alocated only in memory when the
application starts up. Non-zero initialized global data occupies space in the exe fileon disk. To explicitly
document the assumption that global variables are zero-initialized, a comment to make this clear should be
added - for example:

var

nScope : integer { = 00 }; // Scope indicator for the application

Constants

Constant Naming and For matting

The naming convention for constantsis very similar to that for variables with the exception that the prefix
should describe the function or usage of a set of constants. For example, if aset of constants designates the
type of messages that a message broadcasting system can send, the prefix could be "bm" for "broadcast
message”. Below is an example of these constants:

const
bnRef resh = 00; // Refresh the result set
bnRefreshAll = 01; // Refresh the result set
bnRead = 02; // Read the data fromthe result set
bmMNite =03; // Wite the data to the result set
bmMNWiteRead = 04; // Wite and read the data for the result set
bmOpen = 05; // Open the data set
bnC ose = 06; // Close the data set
bmC oseCpen = 07; // Close and then open the result set
brSpeci al = 08; // Special type of nmessage

As noted in the section on documenting variables, a comment describing the function and usage of the
constant should follow each constant declaration.

Page 8 of 27

Typed Constants

Typed constants serve a very useful purposein that they function as pre-initialized variables that have a
global lifetime. Sincethey are not really constants in any sense of the word, they should follow the naming
and formatting rules for variables instead of constants.

Procedures and Functions (Routines)

Naming / For matting

Routine names shall always begin with a capital |etter and be camel -capped (mixed case) for readability.
The following is an example of an incorrectly formatted procedure name:
procedur e thisisapoorlyfornmattedroutinenane;
Thisisan example of an appropriately capitalized routine name:
procedur e Thi sl sMuchMor eReadabl eRout i neNang;
Routines shall be given names meaningful to their content. Routines that cause an action to occur will be
prefixed with the action verb, for example:
procedure Fornmat HardDri ve;
Routines that set values of input parameters shall be prefixed with the word “ Set” - for example,
procedure Set User Nane;
Routines that retrieve a value shall be prefixed with the word “ Get” - for example,
function GetUserNane : string;

Formal Parameters

Formatting

Where possible, formal parameters of the same type shall be combined into one statement:
procedure Foo(Paraml, Paran?, ParanB : integer; Param} : string);

Naming

All formal parameter names will be meaningful to their purpose and typically will be based off the name of
theidentifier that was passed to the routine. All parameter names will be prefixed with the type notation
character appropriate for the data type of the parameter - for example,

procedure SoneProc(sUserName : string; nUserAge : integer);

Ordering of Parameters

Formal parameter ordering emphasi zes taking advantage of register caling conventions. Most frequently
used (by the caller) parameters shall be in the first parameter slots. Less frequently used parameters shall
be listed after that in left to right order. Input lists shall exist before output listsin left to right order. Place
most generic parameters before most specific parametersin left to right order. For example:

procedure Stuff(sPlanet, sContinent, sCountry, sState, sCity : string);
Exceptions to the ordering rule are possible, such asin the case of event handlers, when a parameter named
Sender of type TObject is often passed as the first parameter.

Constant Parameters

When parameters of record, array, string, or interface type are unmodified by aroutine, the formal
parameters for that routine shall mark the parameter as const. This ensures that the compiler will generate
code to pass these unmodified parameters in the most efficient manner. Parameters of other types may
optionally be marked as const if they are unmodified by aroutine. Although thiswill have no effect on
efficiency, it provides more information about parameter use to the caler of the routine.

Page 9 of 27

Name Collisions

When using two units that each contain aroutine of the same name, the routine residing unit appearing last
in the uses clause will beinvoked if you call that routine. To avoid these uses-clause- dependent
ambiguities, always prefix such procedure/function/method calls with the intended unit name-for example:
SysUils.FindClose(rFindFile);
or
W ndows. Fi ndCl ose(hFindFile);

Documentation

Use of an informational header is required for all procedures, functions, methods, and so on. A proper
routine header must contain the following information:

{
OBJECT CetFirstltenm(alndex, nltem)

ARRAY alndex - array of tokens to use to find the target item

NUMERI C nltem - position of the token to use for the search

Method to return a reference to an itemin the list. |t searches the
structure recursively to find the specified item |If the itemis found
t he Found property is set so that the calling routine will know that the
search was successful .

Modi fi cations: 02/08/99 - Created.

02/ 16/ 99 - Changed the nane from Getlten() to
CetFirstltem(). Added test for the | ength of
the search index array to suspend the search
if there are no tokens left to search for.
Added support for the Found property.

Thefirst line of the header contains the prototype of the routine, asit will be called from another routine.
Following the prototype, the header should contain the documentation of each parameter in the parameter
list. Next, it should contain aparagraph describing the structure and function of the routine. Findly, it
should contain amodification list describing each change made to the routine ordered by the date the
changes were made. The comments for the modifications can include the name or initials of the author or
authors of the modifications as well.

Statements

Theif Statement

The most likely case to execute in an if/then/el se statement shall be placed in the then clause, with less
likely casesresiding in the else clause(s). Try to avoid chaining if statements and use case statements
instead if at all possible. Do not nest if statements more than five levels deep. Create a clearer approach to
the code. Liberal use of parenthesesin an if statement is strongly recommended. If multiple conditions are
being tested in an if statement, conditions should be arrange from left to right in order of least to most
computation intensive. This enables your code to take advantage of short-circuit Boolean evaluation logic
built into the compiler. For example, if Conditionl is faster than Condition2 and Condition2 is faster than
Condition3, then the if statement should be constructed as follows:

if ((Conditionl) and (Condition2) and (Condition3)) then begin

end;

Page 10 of 27

When multiple conditions are tested it, sometimes is advisable to have each condition on aline of its own.
Thisis particularly important in those cases, where one or more conditional statements arelong. If this
styleis chosen, the conditions are indented, so that they align to each other - for example:
if ((Conditionl) and
(Condition2) and
(Condition3)) then begin

end;
Reading top-to-bottom usualy is easier than reading |eft-to-right, especially when dealing with long,
complex constructs. When apart of an if statement extends beyond a single line, a begin/end pair shall be
used to group theselines. Thisrule shall also apply when only acomment lineis present or when asingle
statement is spread over multiple lines. The else clause shall dways be aligned with the corresponding if
clause.

Do not test Boolean variablesin the condition against avalue of "true" or "fase". Thisis unnecessary since
the if/then/el se statement requires a Boolean value, which is already in the Boolean variable. Creating a
boolean expression using a boolean variable and a boolean literal ("true”’ or "false") isinvaid and will
cause the compiler to generate less efficient code - for example:
var
bFl ag : bool ean; // Boolean flag for test
begi n

/] Assign a value to the flag.
bFl ag : = true;

/[l 1f the flag is true...
if (bFlag = true) then begin // Incorrect - unnecessary expression

end;

[l If the flag is true...
if (bFlag) then begin /'l Correct - bool ean variabl e test

end;

/!l Assign a value to the flag.
bFl ag : = fal se;

/I If the flag is false...
if (bFlag = false) then begin // Incorrect - unnecessary expression

end;

[l 1f the flag is true...
if (not bFlag) then begin /] Correct - bool ean variable test

end;

Page 11 of 27

end;
Thisrule appliesto al statements or logica constructs that test a Boolean value or expression (i.e. while,
repeat..until, etc.). Thiswill enable the compiler to generate the most efficient code as well as making the
source code of the project easier to analyze and enhance especially when a particular Boolean expressionis
complex.

The case Statement

General Topics

Theindividual casesin acase statement should be ordered by the case constant either numerically or
aphabeticaly. If you use a user-defined type, order the individual statements according to the order of the
declaration of thetype. In some situationsit may be advisable to order the case statements to match their
importance or frequency of hit. The actions statements of each case should be kept simple and generaly
not exceed four to five lines of code. If the actions are more complex, the code should be placed in a
separate procedure or function. Local procedures and functions are well suited for this.

The else clause of a case statement should be used only for legitimate defaults. 1t should aways be used to
detect errors and document assumptions, for instance by raising an exception in the else clause. Al
separate parts of the case statement have to beindented. All condition statements shall be written in
begin..end blocks. The else clause aligns with the case statement - for example:

case (Condition) of

condition : begin
end;
el se // case

ond: C
The else clause of the case statement shall have a comment indicating that it belongs to the case statement.

Formatting

Case statements follow the same formatting rules as other constructs in regards to indentation and naming
conventions.

Thewhile Statement

The use of the Exit procedure to exit awhile loop is discouraged; when possible, you should exit the loop
using only the loop condition. All initialization code for a while loop should occur directly before entering
the whileloop and should not be separated by other non-related statements. Any ending housekeeping
shall be done immediately following the loop.

Thefor Statement

For statements should be used in place of while statements when the code must execute for aknown
number of increments. In those cases, where stepping is needed, use a while statement that starts from the
known end of the loop down to the start condition - for example:
nLi st := oList.Count - 01,
while (nList => 00) do begin
nList := nList - 02;

end;

Page 12 of 27

Therepeat Statement
Repeat statements are similar to while loops and should follow the same general guidelines.

Thewith Statement

General Topics

The with statement should be used sparingly and with considerable caution. Avoid overuse of with
statements and beware of using multiple objects, records, and so on in the with statement. For example:
with (rRecordl, rRecord2) do begin

end;
These things can confuse the programmer and can easily lead to difficult-to-detect bugs.

Formatting

With statements follow the same formatting rules in regard to naming conventions and indentation as
described in this document.

Structured Exception Handling

General Topics

Exception handling should be used abundantly for both error correction and resource protection. This
means that in all cases where resources are alocated, atry..finally must be used to ensure proper
deallocation of the resource. The exception to thisis cases where resources are allocated/freed in the
initialization/finaization of aunit or the constructor/destructor of an object.

Useof try..finally

Where possible, each allocation will be matched with atry..finally construct. For example, the following
code could lead to possible bugs:

oSoned assl : = TSoned ass. Creat €e;
oSoned ass2 : = TSoned ass. Creat e;
try

{ do sone code }
finally

oSonmed assl. Fr ee;
oSonmed ass2. Fr ee;

end;

A safer approach to the above all ocation would be:
oSonmed assl : = TSoned ass. Creat e;
try

oSonmed ass2 : = TSoned ass. Creat e;

try

{ do sone code }

Page 13 of 27

finally
oSoned ass2. Fr ee;
end;
finally
oSonmed assl. Free;

end;

Use of try..except

Use try..except only when you want to perform some task when an exception israised. In general, you
should not use try..except to simply show an error message on the screen because that will be done
automatically in the context of an application by the Application object. If you want to i nvoke the default
exception handling after you have performed some task in the except clause, use raiseto re-raise the
exception to the next handler.

Use of try..except..else

The use of the else clause with try..except is discouraged because it will block all exceptions, even those for
which you may not be prepared.

Classes

Naming/For matting

Type names for classes will be meaningful to the purpose of the class. The type name must have the capital
“T" prefix to annotate it as atype definition-for example:
type
TCustonmer = class(Toject)
Instance names for classes will generaly match the type name of the class without the capital “T” prefix.
The variable for the class instance should be prefixed with the proper variable type prefix, whichin this
caseis“0” for object - for example:
var
oCust omer : TCust oner;
Note: See the section on User -defined Components for further information on naming components.

Instance Variables (Fields)

Naming /Formatting

Instance variable names follow the same naming conventions as variable identifiers.

Visibility

All instance variables should be private. Aninstance variablethat is accessible outside the class scope will
be made accessible through the use of a property.

Declaration

Each instance variable shall be declared with a separate type on a separate line - for example:
TNewCl ass = cl ass(TCbject)

Page 14 of 27

private

nFieldl : integer; // Instance variable for sone stuff
nField2 : integer; // Instance variable for some other stuff

end;

Usage

Instance variables referenced within methods of the class should aways be prefixed with the identifier,
“self” to avoid ambiguity between instance variables, local variables, and forma parameters. For example:
constructor TDataStore.Create(sStart, sFinish, sDelim: string);
begi n

/1 Execute the ancestor class constructor.
i nherited Create;

[/ Initialize the instance vari abl es.

self. Start = sStart;
sel f.Finish := sFinish;
self.sDelim:= sDelim
sel f. bFound : = fal se;
end;
M ethods

Naming /Formatting

Method names follow the same naming conventions as described for procedures and functionsin this
document.

Use of Static M ethods
Use static methods when you do not intend for amethod to be overridden by descendant classes.

Use of virtual/dynamic M ethods

Use virtua methods when you intend for a method to be overridden by descendant classes. Dynamic
should only be used on classes to which there will be there will be many descendants (direct or indirect).
For example, a class containing one infrequently overridden method and 100 descendent classes should
make that method dynamic to reduce the memory use by the 100 descendent classes. It is not guaranteed,
though, that making a method dynamic instead of virtual will reduce the memory requirements.
Additionally, the benefits from using dynamic in terms of resource consumption are so negligiblethat it is
possibleto say:

Always make methods virtual, and only under exceptional circumstances dynamic.
Use of Abstract M ethods

Do not use abstract methods on classes of which instances will be created. Use abstract only on base
classesthat will never be created.

Page 15 of 27

Property Access M ethods

All access methods must appear in the private or protected sections of the class definition. Property access
methods naming conventions follow the same rules as for procedures and functions. The read access
method (reader method) must be prefixed with the word Get. The write access method (writer method)
must be prefixed with the word Set. The parameter for the writer method will have the name, “New”,
prefixed with the proper variable type prefix, and its type will be that of the property it represents - for
example:

TSonmed ass = cl ass(TObj ect)

private
nSoneField : integer; // Some val ue used for sonething useful
prot ect ed

/1 Property access nmethod to return the field val ue.
function Get SoneField : integer;

/1 Property assign nethod to alter the field val ue.
procedure Set SoneFi el d(nNew : integer);

public

/'l Access/ Assign for the “some field” data.
property SonmeField : integer read Get SomeField wite Set SoneFi el d;

end;

Properties

Naming/ Formatting

Properties that serve as access to private instance variables will be named the same as the instance variables
they represent without the variable type prefix. Property names shall be nouns, not verbs. Properties
represent data and methods represent actions. Array property names shall be plural. Normal property
names shall be singular.

Use of Access M ethods

Although not required, it is encouraged to use at aminimum awrite access method for properties that
represent a private field. Thisinsures that assignments to the private data of a class are always done
through awell-defined functional interface reducing the possibility of assignment errors. It also simplifies
extending the assignment behavior for the private data of the class.

Documentation

Use of an informational header is required for all classes. A proper class header must contain the following

information:

{
TDat aStoreltemis an abstract inplenentation of a dynanic data
storage class. This class should NOT be instantiated since it has no
facility for storing any data. This class is inherited by type
specific data storage classes that are able to store data. These
type specific classes provide the data storage services to the
TDat aSt ore cl ass.

Page 16 of 27

Modi fications: 02/08/99 - Created.
}

First, it contains a description of the design and use of the class. In addition it should contain a
modification list describing each change made to the class ordered by the date the changes were made. The
comments for the modifications can include the name or initias of the author or authors of the
modifications as well.

Files

Project Files

Project files will be given descriptive names. For example, the project, “A Tota List Analysis System
(ATLAYS)” isgiven the project name: Atlas.dpr. A system information program will be given a name like
Systeminformation.dpr. Note: Use of long file namesfor every filein a project is highly encouraged.

Form Files

All unit filesthat Delphi generates for aform should be given a name descriptive of the form's purpose that
ends with the suffix, "FormUnit". For instance, if aform performs"Find and Replace" functionality, then
the unit file should be named, "FindReplaceFormUnit.pas" and the form file should be named,
"FindReplaceFormUnit.dfm". The Main Form will have the unit file name, “MainFormUnit.pas’ and a
form file name, “MainFormUnit.dfm”.

Data Module Files

A datamodule will be given a name that is descriptive of the data module's purpose. The name will end
with the suffix, “DataModuleUnit”. For example, the Customers data module will have a form file name of
“CustomersDataM odul eUnit.dfm” and aunit file name of “ CustomersDataM odul eUnit.pas’.

Remote Data M odule Files

A remote data module will be given a name that is descriptive of the remote data modul€'s purpose. The
name will end with the suffix, “RemoteDataModuleUnit”. For example, the Customers remote data
module will have aform file name of “ CustomersRemoteDataM odul eUnit.dfm” and a unit file name of

“ CustomersRemoteDataM odul eUnit.pas’.

Unit Files

Unit Name

If aunitisnot based on aform, it should be given a descriptive name that endsin the suffix "Unit". For
instance, if aunit contains a class that handles data storage, it should be named, "DataStoreUnit.pas’ or

"DataStoreClassUnit.pas’.

Uses Clauses

The uses clause in the i nterface section will only contain units required by code in the interface section.
Remove any extraneous unit names that might have been automatically inserted by Delphi. The uses clause
of theimplementation section will only contain units required by code in the implementation section.
Remove any extraneous unit names.

Page 17 of 27

I nter face Section

The interface section will contain declarations for only those types, variables, procedures, functions,
forward declarations, and so on that are to be accessible by external units. Otherwise, these declarations
will go into the implementation section.

I mplementation Section

The implementation section shall contain any declarations for types, variables, procedures, functions, and
so on that are private to the containing unit.

Initialization Section

Do not place time-intensive code in the initiaization section of aunit. Thiswill cause the application to
seem sluggish when first appearing.

Finalization Section
Ensure that you free any items that you allocated in the Initiaization section.

Form Units

A unit filefor aform will be given the same name as its corresponding form file. For example, the About
Form will have aunit file name of “AboutFormUnit.pas’. The Main Form will have the unit file name of
“MainFormUnit.pas”.

Data Module Units

Unit files for data modules will be given the same names as their corresponding form files. For example
the Customers data module unit will have a unit file name of “ CustomersDataM oduleUnit.pas’.

General Purpose Units

A general-purpose unit will be given a name meaningful to the unit's purpose. For example, a utilities unit
will be given aname of “BugUtilitiesUnit.pas’. A unit containing globa variables will be given the name
of “CustomerGlobalsUnit.pas’. Keepin mind that unit names must be unique across all packages used by a
project. Generic or common unit names are not recommended.

Component Units

Component units will be placed in a separate directory to distinguish them as units defining components or
sets of components. They will never be placed in the same directory as the project. The unit name must be
meaningful to its content. Note: See the section on User-defined Componentsfor further information on
component naming standards.

FileHeaders

Use of an informational file header isrequired for all sourcefiles, project files, units, and so on. A proper
file header must contain the following information:

{

Dat aStoreUnit contains the definition for a dynani c data storage
mechani smdefined in the TDataStore class. This class inherits from
the stock TLi st class and uses the TDat aStoreltem subcl asses to
store the actual data. It is also able to read data fromand wite
data to a text file. This text file nust be in a specific formt.

Page 18 of 27

Aut hor: Mark D. Lincoln

Copyright: (c) 1999 by Cycle Consulting, Inc.
Al Rights Reserved.

Modi fications: 02/08/99 - Created.

02/ 16/ 99 — Converted type specific “Add” methods to
an overl oaded Add() nethod for greater
flexibility.

}
Thefirst item in the header is a paragraph containing the description of the structure and function of the
file. Theauthor item should contain the name of the origina author of the file. The modification list
should contain &l of the changes that have been made to the file organized by the date that the change was
made. The comments for the modifications can include the name or initias of the author or authors of the
modifications as well.

Forms and Data M odules

Forms

Form Type Naming Standard

Form types will be given names descriptive of the form's purpose. The type definition will be prefixed with
acapital “T” along with the component specifier “frm”. A descriptive name will follow the prefix. For

example, the type name for the About Form will be:
Tf rmAbout = class(TForm)

The main form definition will be:
TfrmVain = class(TForm)

The customer entry form will have aname like:
Tf rnCust onerEntry = class(TForm)

Form Instance Naming Standard

Form instances will be named the same as their corresponding types without the capital “T” prefix. For the
preceding form types, the instance names will be as follows:

IType Name | nstance Name
TfrmAbout frmAbout
TfrmMain frmMain
TfrmCustomerEntry frmCustomerEntry

Auto-creating Forms

Only the main form will be auto-created unless there is good reason to do otherwise. All other forms must
be removed from the auto-create list in the Project Options dialog box. See the following section for more
information.

Modal Form Instantiation Functions

All form units will contain aform instantiation function that will create, set up, show the form modally, and
freethe form. Thisfunction will return the modal result returned by the form. Parameters passed to this

Page 19 of 27

function will follow the "parameter passing” standard specified in this document. Thisfunctionality isto
be encapsulated in this way to facilitate code reuse and maintenance.

The form variable will be removed from the unit and declared locally in the form instantiation function.
Note that thiswill require that the form be removed from the auto-create list in the Project Options dialog
box. See Auto-Creating Formsin this document. For example, the following unit illustrates such afunction
for a GetUserData form:

unit User Dat aFromnnit;

interface
uses

W ndows, Messages, SysUils, d asses, G aphics,
Controls, Forms, Dialogs, StdGrls;

type
TUser Dat aForm = cl ass(Tform)

edUser Nane : TEdit;

edUserID : TEdit;
private

{ Private declarations }
public

{ Public declarations }
end;

// Displays the formnodally and returns the user information.
function GetUserData(var sUserNane : string;
var nUserl D : integer) : integer;
i npl enent ati on

{$R *. DFM

{
NUMERI C Cet User Dat a(sUser Narme, nUser| D)

STRING sUser Nane — nane of the current user

NUMERI C nUserID - identifier for the current user

Function to return the user infornmation to the caller in the variable
paraneters. The return value of the function denotes whether the user

pressed the okay push button.

Modi fi cati ons: 02/08/99 - C eat ed.

}
function GetUserData(var sUserNane : string;
var nUserID : integer) : integer;
var
frmJserData : TUserDataForm // Reference to the form
begi n

Page 20 of 27

/'l Instantiate the form nmaki ng the application its owner.
frmUserData : = TUser Dat aForm Creat e(Application);

try

/1l Assign a new caption to the form
frmJserData. Caption := 'Getting User Data';

/|l Display the formand return the button pressed by the user.
result := frmJserDat a. Showbdal ;

[l |If the user pressed the okay push button...
if (result = mmOK) then begin

[/ Get the current user information fromthe form
sUser Nane : = frmnJser Dat a. edUser Nane. Text ;
sUserID := StrTolnt(frnlserData.edUserlD. Text);

end;
finally

/!l Free the resources allocated for the form
fr mUser Dat a. Fr ee;

end;
end;

end.

Event Handling Procedures

Event handling procedures should be grouped by control and organized within each group in alphabetica
order. The groups of event handlers should be ordered so that the form event handlers appear first in the
implementation section of the unit followed by all of the other event handlers. For example, al of the form
specific event handlers should be grouped together, followed by the menu item event handlers, the button
event handlers, and possibly the edit control event handlers. Each group of event handlers should be
separated by a dividing comment like the following:

***}

{********************** FOr”]EVent thdling hbthods **********************}
{***}

procedure TfrnFi nd. For nCr eat e(Sender: TObj ect) ;
begi n
end;

{***}

{***************** Button Event andling thhods *************************}
{***}

procedure TfrnFi nd. pbFi ndd i ck(Sender: TObj ect);
begi n
end;

Page 21 of 27

Data Modules

Data M odule Naming Standar d

A DataModule type will be given a name descriptive of the data modul€'s purpose. The type definition will
be prefixed with a capital “T” along with the component specifier “dm”. A descriptive name will follow
the prefix. For example, the type name for the Customer data module would be something like:

TdnCust oner = cl ass(TDat aMbdul e)
The Orders data module would have a name like:

TdmOrders = cl ass(TDat aMbdul e)

Data M odule Instance Naming Standard

Data modul e instances will be named the same as their corresponding types without the capital “T” prefix.
For example, for the preceding form types, the instance names will be as follows:

[Type Name | nstance Name
ITdmCustomer dmCustomer
TdmOrders dmOrders
Packages

Use of Run Time versus Design Time Packages

Run time packages will contain only units/’components required by other components in that package.
Other, units contai ning property/component editors and other design only code shall be placed into adesign
time package. Registration units will be placed into a design time package.

File Naming Standards

Packages will be named according to the following templ ates:

"iiilibvv.pkg" - design tine package

"iiistdvv.pkg" — run tine package
where the characters "iii" signify a 3-character identifying prefix. This prefix may be used to identify the
company, person or any other identifying entity. The characters, "vv", signify aversion for the package
corresponding to the Delphi version for which the package is intended.

Note that the package name contains either "lib" or "std" to signify it as aruntime or design time package.
Where there are design time and run time packages, the fileswill be named similarly. For example,
packages for the Cycle Consulting, Inc., System Utilities for Delphi 4.0 are named as:

SysLi b40. pkg - design tine package

SysSt d40. pkg — run tine package

Components

User-defined Components

Components shall be named similarly to classes as defined in the section entitled " Classes” with the
exception that they are given an identifying prefix. This prefix may be used to identify the company,
person or any other entity. For example, a clock component written for Cycle Consulting, Inc., would be
defined as:

Page 22 of 27

Tcci O ock = class(TComponent)
Note that the prefix isin lower case.

Component Units

Component units shall contain only one major component. A major component is any component that
appears on the Component Palette. Any ancillary or supporting components or objects may also reside in
the same unit for the major component.

Use of Registration Units

The registration procedure for components shall be removed from the component unit and placed in a
separate unit. This registration unit shall be used to register any components, property editors, component
editors, experts, etc.

Component registering shall be done only in design time packages, therefore the registration unit shall be
contained in the design time package and not in the run time package. It is suggested that registration units
be named as:

Xxxx Reg. pas
where the "Xxxx" shall be a prefix used to identify a company, person or any other entity. For example,
the registration unit for the components constructed at Cycle Consulting, Inc., would be named
“CciReg.pas’.

Component Instance Naming Conventions

All components must be given descriptive names. No componentswill beleft with their default names
assigned by Delphi. Components will have alowercase prefix to designate their type similar to the
prefixes used for variables. The reasoning behind prefixing component names rather than post-fixing them
isto make searching component names in the Object Inspector and Code Explorer easier by component
type.

Component Prefixes

The following prefixes will be assigned to the standard components that ship with Delphi. Please add to
thislist for third-party components as they are added.

Standard Tab

Prefix Component

mm TManMenu

pm TPopupMenu
mmi TMainMenultem
pmi TPopupMenultem
Ibl TLabel

ed TEdit

mem TMemo

btn TButton

chk TCheckBox

rb TRadioButton

b TListBox

cb TComboBox

scb TScrollBar

gb TGroupBox

rg TRadioGroup

pnl TPanel

Page 23 of 27

cl TCommandList

Additional Tab

Prefix Component
bbtn TBitBtn

sb TSpeedButton
me TMaskEdit

sg TStringGrid

dg TDrawGrid

img TImage

shp TShape

bvl TBevel

shx TScrollBox

clb TCheckListhox
spl TSplitter

stx TStaticText

cht TChart

Win32 Tab

Prefix Component

thc TTabControl

pgc TPageControl

il TImageList

re TRichEdit

thr TTrackBar

prb TProgressBar

ud TUpDown

hk THotKey

ani TAnimate

dtp TDateTimePicker
tv TTreeView

Iv TListView

hdr THeaderControl
stb TStatusBar

tlb TToolBar

clb TCoolBar
System Tab

Prefix Component

tm TTimer

pb TPaintBox

mp TMediaPlayer
olec TOleContainer
ddcc TDDECIientConv
ddci TDDEClientltem
ddsc TDDEServerConv
ddsi TDDEServerltem
Internet Tab

Prefix Component

csk TClientSocket
ssk TServerSocket

Page 24 of 27

whbd TWebDispatcher

pPp TPageProducer

tp TQueryTableProducer
dstp TDataSetTableProducer
nmdt TNMDayTime

nec TNMEcho

nf TNMFinger

nftp TNMFtp

nhttp TNMHittp

nMsg TNMMsg

nmsg TNMMSGServ
nntp TNMNNTP

npop TNMPop3

nuup TNMUUProcessor
smtp TNMSMTP

nst TNMStrm

nsts TNMStrmServ

ntm TNMTime

nudp TNMUdp

psk TPowerSock

ngs TNMGeneral Server
html THtml

url TNMUTrl

sml TSimpleMail

Data Access Tab

Prefix Component

ds TDataSource

thl TTable

ary TQuery

sp TStoredProc

db TDataBase

ssn TSession

bm TBatchMove

usq TUpdateSQL
Data Controls Tab

Prefix Component

dbg TDBGrid

dbn TDBNavigator

dbt TDBText

dbe TDBEdit

dbom TDBMemo

dbi TDBImage

dblb TDBListBox

dbcb TDBComboBox
dbch TDBCheckBox
dbrg TDBRadioGroup
dbll TDBLookupListBox
dblc TDBLookupComboBox
dbre TDBRIichEdit

dbcg TDBCtrlGrid

dbch TDBChart

Page 25 of 27

Decision Cube Tab

Prefix Component

dcb TDecisionCube
dcq TDecisionQuery
dcs TDecisionSource
dcp TDecisionPivot
dcg TDecisionGrid
dcgr TDecisionGraph
QReport Tab

Prefix Component

qr TQuickReport
qrsd TQRSubDetail
arb TQRBand

qrcb TQRChildBand
qarg TQRGroup

qrl TQRLabel

art TQRText

are TQREXxpr

ars TQRSysData
arm TQRMemo

qrrt TQRRichText
grdr TQRDBRichText
grsh TQRShape

qri TQRImMage

grdi TQRDBMImage
qrer TQRCompositeReport
arp TQRPreview
grch TQRChart
Dialogs Tab

The dial og box components are really forms encapsulated by a component. Therefore, they will follow a
convention similar to the form naming convention. The type definition is already defined by the component
name. The instance name will be the same as the type instance without the numeric prefix, whichis

assigned by Delphi. Examples are as follows:

Type Instance Name
TOpenDiaog OpenDiaog
TSaveDiaog SaveDiaog

TOpenPictureDialog
TSavePictureDia og

OpenPictureDiaog
SavePictureDialog

TFontDiaog FontDiaog
TColorDiaog ColorDidog
TPrintDialog PrintDialog
TPrintSetupDialog PrinterSetupDiaog
TFindDiaog FindDialog
TReplaceDiaog ReplaceDiaog
Win31 Tab

Prefix Component

dbll TDBLookupList

dblc TDBLookupCombo

ts TTabSet

Page 26 of 27

ol TOutline

tnb TTabbedNoteBook
nb TNoteBook

hdr THeader

flb TFileListBox

dib TDirectoryListBox
dcb TDriveComboBox
fcb TFilterComboBox
Samples Tab

Prefix Component

ag TGauge

cg TColorGrid

spb TSpinButton

spe TSpinEdit

dol TDirectoryOutline
ca TCalendar

ibea TIBEventAlerter
ActiveX Tab

Prefix Component

cfx TChartFX

vsp TV SSpell

flb TF1Book

vtc TVTChart

arp TGraph

Midas Tab

Prefix

prv TProvider

cds TClientDataSet
qcds TQueryClientDataSet
dcom TDCOM Connection
olee TOleEnterpriseConnection
sck TSocketConnection
rms TRemoteServer
mid TmidasConnection

Page 27 of 27

